Difference of Buried Photodiode and Pinned Photodiode

Figure 5 does not have the P+ channel stop nearby.

NEC IEDM1982 Paper

Fig.6. Storageable electrons vs. transfer gate channel potential, and decay lag vs. transfer gate channel potential in the P*NP* structure photodiode

NEC IEDM1982 Paper reported Image Lag

Figure 6 shows that there is still image lag at the CTG gate voltage of > 10 volt.

A long P+ Surface Stripe also has a serious RC delay.

Pinned Photodiode Must Have the Grounded P+ Channel Stops Nearby.

The resistivity ρ of the P+ hole accumulation layer is given by $\rho = R *W *d/L$

In the 2/3 inch optical lens system, we have the optical image size of 8.8 mm (H) x 6.6 mm (V) which was a common size in 1980s. Hence, we then have L = 6.6 mm = 6600 μ m

The short wave blue light cannot penetrate more than $d = 0.2 \mu m$ into the silicon crystal in depth. Hagiwara reported in SSDM1978 paper Qd = $2 \times 10^{13} cm$, which gives Nd = Qd/d = $1 \times 10^{18} cm$.

For Nd = 1×10^{18} cm⁻³ we have $\rho = 0.04$ ohm cm = 400 ohm μ m

RC = {Lp / (W*d) } {EW*L/Xo} = EpL2/(d Xo)

We have $\varepsilon = 216$ e/volt μ m for silicon oxide and $e = 1.6 \times 10^{-19}$ Coulomb

 $RC = (216) (1.6 \times 10^{-19}) (400)(6600)(6600) / (0.2)/(0.1)$ sec

RC = 30.1 μ sec while one frame is 1/60 sec = 16.7 msec and the Vertical CCD register clock period is 16.7/500 = 33.4 μ sec

Hence RC delay time may not be ignored and surface P+ may be floating?