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Abstract—The final stages of transfer of charge from under a
storage gate is formulated analytically including both fringing-field
induced drift and diffusion. Analytic solutions to these equations are
presented for constant fringing fields, and a system of equations for
spatially varying fields is developed. Approximate solutions for

. gpatially varying fringing fields, when bined with a lumped
parameter model of the self-induced field effects, are shown to give
ar y accurate repre: of the fr harge transfer

process.

Tl

1. INTRODUCTION

ARLY descriptions [1], [2] of the charge transfer in
charge-coupled devices (CCD) assumed that during
the final stage of the charge transfer, the mechanism of
transfer would be diffusion from under the storage gate.
However, subsequent studies of the surface-potential pro-
files under the gates [3] indicated that fringing-field
induced drift could act as an additional charge-transfer
mechanism. In certain designs of CCD. this second mech-
anism can actually act as the dominant mechanism for
transfer and enhance the rate of transfer during the final
. stage of charge transfer [4], [5].
These 2 mechanisms of transfer are characterized by 2
_time constants, the thermal-diffusion time constant, .,
and the single-carrier transit time constant, 7. In the
case when the fringing fields are 0, the final stages of the
diffusion processes are characterized by a profile which is
' & cosine function in shape and which decays exponentially
with a time constant given by

. ALt

™= 2D
where L is the length of the storage clectrode, and D) is the
diffusion constant.

On the other hand, if we neglect diffusion phenomenon,
the charge remaining under the storage gate will be swept
out in a single-carrier transit time

. f" dr
Tz = oy
! o HE(r)

In this paper, we study these results analytically. We

show that it is possible to obtain an analytic solution of

(1)

(2)
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the continuity equation in which the combined effects of
diffusion and a uniform fringing field are included. A set
of equations for spatiallv varying fringing fields are de-
veluped to show that the analytic solution for spatially:
varving ficlds ean also be written in a form analogous to
that for constant fringing fields.

The standard variational method is applied to obtain
an approximate analytic expression for the characteristie
time constants for spatially varving fringing ficlds. Self-
induced drift terms arc included by using an approximate
lumped-circuit model. '

[I. TRANSPORT DYNAMICS

The transport dynamics along the insulator-semicondue-
tor interface are deseribed by the continuity equation

ag

ad
3t + ;J, =0 (3a)
and the diffusion equation
aq (
=-D=+ 2 3
Js Da.:-i uq 3 (3b)

where ¢ is the surface-charge density, ¢, is the surface
potential, and z is the distance along the interface in the
direction of charge transfer. J, is the sheet-current density.

In this paper, we want to consider the solution to (3)
for boundary conditions and approximations appropriate
to the case where the storage gate eontains a small amount,
of charge. This condition will arise in the final stage of
the charge transfer, in the complete charge-transfer mode
[5], or when the CCD is operated in a low-level injection
application, such as low light-level imaging. In these
cases, we can to the first approximation neglect the sclf-
induced field terms. i

When a CCD is operated in the complete charge-
transfer mode, detailed numerieal simulation of the trans-
port dynamics under all the relevant gare electrodes and
intercleetrndes regions show that the charge transfer in
the last stages of the transfer process can be approximately
described by the discharge of the storage gate with an
almost perfect sink at one end [5]. Thercfore, we have
considered the solution of (3) for the discharge of the
storage gate using the boundary conditions

g(t.L) = 0, fort >0 (4a)
J.(40) =0, fort> 0. (4b)

Condition (4a) corresponds to assuming a perfeet sink at
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the right-hand end of the storage gate x = L; (4b) corre-
sponds to assuming that no current flows out of the bucket
under the storage gate through the edge at z = 0.

III. CONSTAXNT FRINGING FIELD
Assuming a constant fringing ficld £ under the storage
gate and neglecting the self-induced field term, the re-
sidual surface-charge profile under the storage gate is
given by solving (3) to obtain

Ly
2kT

e Ye(-2) @

where LT is the thermal voltage and n is 2 summing index.
"The solution is given by a Fourier expansion multiplied by
a common funetion, exp (Er 2kT), with constants C,, r,,
and 1, to be determined as follows. .

(', is determined by the boundary condition at z = 0
and is given by solving the transcendental equation (see

g(tx) = 3 A, exp

Fig. 1)
tan (E C.) + (kj) wCa=0 (6a)
2 LE
where C, is in the rnnge. given by .
M —-1<C, <2, for n=12:--. (6b)

7. is given by substituting (3) into (3) to obtain

1 ,eD _(uE)
™ 4L 4D @

Noting that the exponential term, exp (Ez/2kT) in (5)
can be taken outside of the summation, we then obtain

2 & . —Er
el 7 7 P ”rC,.]j; 4(0.2) """(2:;1")

.sin [g c. (1 = —;-')] dr (8)

where use of the boundary condition (6a) has been made.

Detailed numerieal simulations [4], [5] of charge trans-
fer, including the effects of fringing fields, show that the
profile of charge changes for a single-carrier transit time
and then becomes stationary with an exponential time
decay of the amplitude. This result is easily understood
in light of the solution presented in the previous diseus-
sion. From (7) and (6b), one can sce that 7, is a decreas-
ing function of n. Hence, for reasonably smooth initial
charge distributions which produce finite values of A.
which ecither remain relatively constant or decrease with
increasing n, we expect that eventually the first term in
the series in (H) dominates the series, and g(4,r) can be
approximated by

Ery . [x r [}
qllr) =~ Ayexp (EE?‘) sin [2 C, (] - L)] exp(— f,r)

(9)
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Fig. 1. The graph illustrates huw to obtain C; and C3 defined b
{6a): Note1 < (' < 2und 3 < Cy < 4 for any value of LE/ET.
This is the rondition given by (6b) for numbering the rost Ca
(the intersection) of the straight line with each branch of the
tangent function.

where we have replaced my by r; to indicate that it is the
time constant characterizing the final decay of the charge.
Using (7), we find that

1 »*D | (uE)?
o et el S
™ 7 Y

(10)
Hence, we find for times which are greater than some as
yet to be determined time (sce Scetion 1V), the charge
profile remains constant, and the amplitude decays expo-
nentially with time. The charge profiles at several different
times are shown in Figs. 2 and 3 to illustrate the details of
the charge transfer. \

Determination of the value of r; depends upon the value
of €1 The results of a numerical solution of (6a) for C,,
as a function of the dimensionless parameter KL/kT, are
plotted in Fig. 4. From this plot, we sce that €, ranges
from 1 for EL/kT = 0 to a value of 2 as EL/KT ap-
proaches infinity. { Note the first term in (6a) is negative.)

To compare this final decay eonstant with the 2 charae-
teristic times defined in Section I, we have computed the
value of the ratio of v, to 7u to be

Ts 1
il S 0 e B A 1
ra " Ci+ (LE/=KTY i
and the value of the ratio of r; to 7., to be
2
1 __ALE/x%T (11b)

re  Ci + (LE/xkT)*’
These ratios as a function of LE/kT are plotted in Iig. 5.

IV. STATIONARY PROFILE WITH CONSTANT
FRINGING FIELD
According to the detailed numerical simulation [4], [5]
of charge transfer under the influence of fringing fields,
the charge profile under the storage gate drifts for a
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POSITION

ig. 2. The details of the charge decav at different instances are
Ulustrated for three different values EI/ET of constant fringing-
field strength. The initial churge profile is taken to be uniform.
The total initial charge is 70 percent of the full bucket chirge
. (146 C/u?). Note in all three cases, the relative charge profile

mes stationary within o single-carrier transit time. The-

sition of the Ebeak of the final charge profile is given exactly

y (14). (8) El/KT = 3.35. The total number of profiles shown is
18. The corresponding times are 0.01, 0.02, 0.03, 0.05, 0.07, 0.10,
0.15,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, and 2.0 of a fingle.
carrier transit time, (b) El/KT = 6.74. The total number of
El_uﬁ.lﬁ shown is 16. The corresponding times are similar to

ig. 2(a). The profiles at ¢ = 1.5 and 2.0 are deleted. (¢) ElI/kT =
31.0. The total number of profiles shown is 16, The corresponding
times are the same as Fig. 2(b).

single-carrier transit time and then hecomes stationary.
No matter how strong the fringing ficlds are for reasonable
initial charge distributions, such as uniform or a ecosine
shape, in the final stage of charge transfer, the stationary
profile results eventually because of the thermal-diffusion
mechanism. This is to say that the first term in the infinite
series in (5) becomes the duminant one within an elapsed
time, ¢, of the order of a single-carrier transit time. .

We now return to the question of what is the value of
the lower time limit for the validity of approximation of
keeping only the first term in the series in (3). To gauge
this time, we consider the ratio r of the first two terms
in the scries in (3). Assuming that A, is the same as .,
and.neglecting spatial variation, this ratio is given by

s = exp [r—i (Cst — C'n‘)]

where use of (7) has been made. In terms of the single-
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carrier transit time, this ratio can be written as

' t kT
- — I (cr—-cy .
" “"[f.. T AN )]
Taking as our criterion the fact that the value of the expo-
nent in this expression is greater than one, we find that
(9) is valid for

_ [4EL/r'kT] _ i

o - Cp

The right-hand side of this incquality i= a multiple of the
7w, With the constant multiplying the transit time depend-
ing on the value of the parameter ET kT. The value of
this multiplier can be approximated as follows.

The value of Cy* — C;? varies monotonically between 8
when EL/kT is 0 to 12 when EL/kT approaches infinity.
Thus we can replace the inequality by

EL
> 1 (ﬁ)/ 22,

This inequality shows that for EL/KT between 0 and
about 30 (the values normally encountered in devices),
the approximation is valid for times greater than a single-
carrier transit time. Hence, the results of the numerical
simulations arc. in good agreement with the analvtical
results obtained here, and we can desceribe the final churge
profile by (9). '

The peak position of the charge packet, rp.., after it
becomes stationary under the storage gate, is given by
differentiating (9) with respect to z and setting the result-
ing equation to be 0. Then using the eondition (6a), we

obtain
Tpesk C -

This expression shows the peak-position varies with the
strength of the fringing field. For 0 field, C, is unity. The
surface-charge profile is a cosine function with a maximum
at z = 0, and it decays exponcentially with the time con-
stant equal to the thermal-diffusion time constant.

For large fringing ficlds, the value of C'y approaches 2 as
shown in Fig. 4, but never beeomnes larger than 2. For
extremely large fringing fields, C, = 2 and rpe = L, im-
plying that the peak position approaches the sink edge at
z = L. At times, the exponential decay is observed satisfy-
ing the inequality in (12), and the characteristic decay
time is a factor approximately § of the single-carrier transit
time, as we observe in Fig. 5. Figs. 2 and 3 illustrate the
details of the charge decay as we have discussed so far.

V. SPATIALLY VARYING FRINGING FIELDS

We now note that the constant and spatially varying
fringing ficlds both give similar charge-decay characteris-
tics. This is to say that the analytic solutions of both
spatially varying and constant fringing fields can be writ-
ten in similar forms. Both solutions can be expressed by
infinite serics, and as time clapses, the term with the

(13)

(14)
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ELECTRIC FIELD PROFILE

§

KEY+140.4 _volt/em

FIELD {voit/em)

§

En™ T4 volt/cm

* POSITION

Fig. 3. The details of the charge decay at different stoges. The condition is similar to the results of Fi&. 2 exe_lgﬂ:
the fringing field 1= ,-'Ea.tm[l_\' varying in this ease. An average fringing field computed by (2) is 140 V/em
ll-ninh‘;“[J]T fri‘fl]d is 74 V/em. The total number of profiles shown is 16. The corresponding times are the same as

Fig. 2(b) and (c).

1.9
L T =T T
] 0.5
1.5 -
¢ ]
L 4
.
1 o 0 20 30 40
kT -
5 % % % s :
EL/KT Fig. 5. The final decay time constant, #;, normalized hy the single-

2 e . carrier transit time r,, and by the thermalaliffusion time constant
Fig. 4. Vaulues of €y defined by (6), plotted lg;mst the normalized Tun Plotted against the normalized fringing-ficld strength EL/ET.
fringing-field strength EL/kT.

. : . - (f,r), as scen b
largest time constant 7y beeomes dominant, resulting in k) ¥

the exponential decay characteristics and the constant g f' :
: 2 i ; 2 t,2') dr'. 15
charge profile. In this case, it is convenient to work with tz) = N gitx) an)
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Using the definition for @ and the fact that current, flows
only out of one end of the gate (see (4b)), we can write
(3) as ’
’Q

aQ
D;ﬁu

Py (16)

ad
wE(z) 22

t-[of " [aw/deP dz + /2 [ " [B@)/T — dBJishi(a) |/ [ Cyita) da.

where the boundary condition equivalent to (4a) is
given by

aQ(t,

Q(t,x) -0

9z |-

" The boundary condition (4b) is used to derive (16). We
now have instead, a different boundary condition at x = 0,
which follows directly by the definition of @(t,z) given
by (13) and is seen as

Q(t,0) = 0, for all t. (17b)
To eliminate the first derivative from (16), we intro-

duce the following transformation:

g ]
Q%) = exp (EI’I" j: E(2) d:.) R(Lz). (18)

(17a)

Then, (16) becomes
L o
at = Pos " almr T a)® 9
with the new boundary conditions given by .
aR  E(x) ,
= kT R=0, at X = L (20a)
and
R(t0) =0, forallt. (20b)

The solution of (19) together with the boundary condi-

tions is given by an infinite series of the form

R(t,r) = X Buya(z) exp (—t/1a) (21

=1 .

where B, is to be determined by the initial values of

R(0,z). va(z) and 7. are the eigenfunctions and eigen-

values, respectively, of the eigenvalue problem given in
(19) and (20).

The results in the case of constant fringing fields com-
bined with the results of detailed numerieal simulations
suggest strongly that for times which are a few times the
single-carrier transit time, we ean approximate the series
in (21) by the first term and write

fE(x) d:) 71{x) exp (—t/1;)
0
(22)

Qt,z) = By exp (Eicl‘i'
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where again, we have replaced =, by r,.

The largest time constant r; could, in general, be ob-
tained by solving (19) and (20). However, a good estimate
can be obtained from the standard variational procedure
for lowest eigenvalues [8]. According to this procedure,
the exact value of r, is obtained by minimizing

(23)

The solution of (19) with E(z) constant suggests the
trial function for the first eigenfunction
‘I'Clz]
2L §’
This trial function must satisfy the boundary conditions
of (20). That is, the value of () is to be determined by
the strength of the fringing field E(L) at the sink cdge of
the gate (see (20a)). Since the fringing fields at the ends
of storage gates are very large (3], [5], we have

E(L) > kT/L. (25)

Henee, substituting vi(x) of (24) into R of (20n), we
obtain

1(z) = sin (24)

—tan (’7&) = xCy E—E,%L—) <1 (26a)
and hence, _
’ Ci= 2. (26b)
With this value of €, substituting the trial function given
by (24) into (23), we obtain
14, e
L4 Tih 4D -

E., is an equivalent constant fringing ficld for the spatially
varying fringing field £(z) and is given by~

.2t d. . [z

T — - " 1] —
El=7 f. [E’(:) 2%T af] sint [L ]d:. (27b)
Note that, due to the weighting function sin® (zz/L),
the integral vanishes at both ends of the gate; z = 0 and

L. The contribution of the intergrand at the ends of the
storage gate is relatively small, but the fringing fields at

(27a)

‘the positions of high-charge concentration are weighted

heavily in the integral. If the fringing field is slowly vary-
ing and is at its minimum value Eqy, under most of the
storage gate (except at the ends), then we obtain E(r) =~
Eniw and dE/dX = 0. Hence, from (27b), we have
'a % Emin. inally, we obtain an approximate analytic
formula of the time constant for spatially varying fringing
fields, which is
L1 4 W
T T Ta 4D
Care must be taken in applying this formula. This formula

(28)
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was obtained for slowlv varving fringing fields under most
of the storage gate, and other configurations may give
different fringing-field profiles leading to different results,

TFor example. in CCD structures with short stornge-gate
length L, E.; may be a fow times larger than E . Inothas
‘case, (27b) could be used 1o obtain £, if the fringing-
field profile is known. For short storage-gate leugth 1, the
spatial dependence of the fringing fields can be approx-
imated by [3]

Ein) = f——!— for 0K X <TL 2 (2
2X .
B, L . z 3
= :)*(—},-:——::-\7']— Y for L:2<XN < f 120

Substituting (29) into (27h), we obtain £, = LU,
for the same trial function »(2) given by (241, In cither
case, as seen in- (25, we note that the reduction of the
final decay time eonstant by the fringing-ficld strength is
quadratic rather than linear.

If we include the nonlincar =clf-induced field drift, exact
analytic solutions'of 13) become difficult. However, using
a lumped-cireuit model,! the charge-transfer characteristics
can be nbtained by solving the discharge equation [5], [6]

_dQ(L)

Je =
dt

(30a)
where J, is the steady-state discharge current density
assumed constant across the gate. and Q{t,L) is the total
charge under the gate.

The relation between the surface potential ¢, and
surface-charge density g, under the transfer gate, is given
according to the gradual channel approximation [47], [5]

b= bt G (30b)
where ¢,, is the surface potential with no charge. and C is
the effective oxide- and depletion-layer eapacitance per
unit arca. When the fringing fields are negligible compared
to the self-induced field, we have

¢,
ar

(30c)

=~

Al
gig

Then. if the difference in the surface potential between
the beginning and end of the gate is 1, by integrating the
diffusion equation (3b) over space, we obtain [5], [7]

R :
Jo= 5L OV 4+ 2TV] (31a)
where. we note
g(0; = CV. (31b)

Since J: in (3b) is assumed constant for 0 < r < L, we
' According to this model, the storage gate is considered, in this

case, as & capacitor discharged through a transfer channel which is
the same storage gate.

m

&, Y

VOLTS) |

: "°E’
+ FOR EMPTY WELL

L

.\or_

Ey %
(VOLTS 4} o .

o

Fig. 6. The ~mifaee potential und electric field along the Si-Si0y
iwterface obtained from the solution of the two-dimensional
Puissun's equation. The electrode voltages eorrespond to the

er stages of the charge tronsfer,? with a signal charge in the
iving storage gate. The substrate doping i 10" dunors;/ em?.
i’l'h_r fixed =upfnee-state charge 15 3.6 X 10" em?, in this ealeu-
aton,

abtain g(r) for 0 < r < L. Then, by integrating g(r),
we obtain
V4 3kT/2

QULL) = 'i'LCl —-V—I-—ﬁ

. (3te)
Then, the solution of (30a) is of the form

Q(tL)
Q(,L)

- . exp (—t/r;)
14+ Q(O,L) /3CL(L/2kT) (z7/m) (1 — exp (—t/7/)]

(32)

where Q(0,L) is the initial total charge under the storage
gate, and 7, is given by (28).

VI. NUMERICAL RESULTS

The exact fringing-field profile can be obtained by solv-
ing the two-dimensional Poisson equation for the CCD
structure with the applied gate voltages. In Fig. 6, we
have plotted the surface potential and surface-potential
gradicnt along the semiconductor-insulator interface. The
voltages on the gate electrodes (see IFig. 6) are those
corresponding to the last stage of the charge transfer.
Aost of the signal charge was taken to be in the receiving
storage eleetrode.? Periodic boundary conditions were used.
The minimum fringing ficld £.,1s, in this case, is equal to
74 V/em.

To check the accuraey of the approximate solution for
s given by (28), we have solved (3) numerieally for the
fringing-ficld profile given in Fig. 6 [2]. The full-line
curve in Fig. 7 represents the numerically caleulated re-
sidual charge under the storage gute versus transfer time
with the self-induced fields. The dashed-line curve in Fig.
7 is the residual charge ealeulated using (32). The value

t For two-phase push-clock scheme, the sctual receiving gate
voltage is =130 V instend of —49.8 V in Fig. 3, and the difference of
5.2 V corresponds to the amount of the signal present
the receiving gate.
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= Exact Numerical Selution
‘=== Appromimotion

TO% INITIAL CHARGE

20% INITIAL CHARGE

MR Bk R o i o

N »
50 100 150

— TIME (nsec) —=

RESIDUAL CHARGE AS A PERCENTAGE OF A FULL BUCKET

75

Total residual charge under the left Si-source gate as a

Fi .
?ulwtmn of time. The effective oxide capacitance is 3.22

F/ut,

and the foll bucket charge is 14.6 C/w?. The solid curve represents
exact numerical solution of (3. and the dashed curve is an ap-

roxlmntmn by (32).
Fnes and r

is for the slope of the two purallel solid
for the ljﬂS{lD(i lines. The final slope (hence, also the

final time constant) does nut depend on the total amount of the

initial charge under the storage gate.

of the final decay time constant r; calculated from (28)
is 22.7 ns compared to 21.2 ns obtained from the numecrical

_solution. .
' VIll. CONCLUSION

Incomplete transfer of free charge in CCD with small

- amounts of charge to be transferred was characterized
analytically, including the effeets of diffusion and fringing

fields. We have found that, independent of the fringing-

field profile, the exponential decay characteristic is solely

due to diffusion. However, the characteristic time con-

stant r, for the decay depends on diffusion and fringing
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fields and is found to be always a fraction of the single-
carrier transit time ry, (sce Fig. 5).

The standard variational procedure was applied to ob-
tain an approximate analytic expression for the charaeter-
istic time constant (See (23)), and the exprossion was
evaluated for spatially varving fringing ticlds (see (26))
which vary relatively slowly over most of the storage gate
length but increase considerably at the edges of the gatea.
Such fringing-field profiles are typical for most minimum
geometry CCD structures (minimum gate dimension of
about 10 u) and substrate doping greater than 104/cm?,
The constant and spatially varving fringing Rclds both
were found to give exponential charge-decay character-
istics. When the magnitude of the ficld becomes greater
than a few times £T'/L, the discharge is considerably en-
hanced by the fringing-field drift.

If the self-induced ficld terms are introduced, then,
using a lumped-circuit model, the free-charge transfer
process is given quite aceurately by the formula given.
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