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Welcome to the 2013 IEEE International Solid-State Circuits Conference (ISSCC).
This year, we will celebrate the 60th anniversary of ISSCC. ISSCC is the flagship
conference of the Solid-State Circuits Society, and is the premier forum for the

presentation of advances in solid-state circuits and systems-on-a-chip. The

Conference offers a unigue opportunity to network with leading experts in the field.

For 2013, the Conference theme is "60 Years of (Em)Powering the Future®. more
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Yoshiaki Higihara: The p-n-p-n
Diode in Future Linear Motor Cars
and in Modern Imagers
John Lowms Moll (1921-2011) was
studying a p-n-p-n diode switch in
his Ph.ID. dissertation work when
the first ISSCC was held in 1954, Ina
normal operation mode, this device
works as a thyristor, which can
drive a large current and is the key
device structure of an IGET applied
for a linear motor car of the future
{see Figure 9). In a dynamic opera-
tion mode, this device may work as a
simple p-n-p-n dynamic capacitance
that can detect and store one single
electron, which 15 a key device struc-
ture of the modern image sensor
(see Figure 10).

| recall, when | was taking his
physics course at Caltech, that Feyn-
man once said that an electron is
always free, moving around rapidly
in free space, even in solid, and 1t
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Yoshiaki Hagihara shared his
memories of Richard Feynman, his
mentor and educator at Caltech, and
how he learned from him that con-
trol of electrons is at the heart of all
electronic devices. As an example
from his attic, he pointed to the
BRODY old p-n-p-n junctions that are now

Yoshi Hagihara, Eric Vitioz and Bob Brodersen.

Never stops. It 1S very hard to catcn
an electron because we do not know
exactly where it 1s. Our civilization
today 1s based on a technelogy that
controls electrons, down to a single
one.

Imagine a photon ncdent to a
bipelar transistor base region. The
photon energy creates an electron-
hole pair. And the photo-electron
can be stored in the base region as
one single majority carrier. That is,
a bipolar transistor can also func-
tion as a photon detector and/or a
storage container. | thought that a
room in a hotel must be empty and
clean before the first hotel guest
arrives. 5o must be this transistor
base region empty and clean with
no guest electrons at the begin-
ning. This transistor in a dynamic
p-n-p capacitor mode 1s useful since
it can capture, confine, and con-
trol one single electron. But as a

incorporated in modern-day image
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Prof.J.L.Moll

Prof. W.Kosonocky

student, | did not know yet how to
move that single photoelectron sit-
ting in the base region to the out-
side world so that we can make use
of it as a signal. | had no way yet to
know whether the hotel guest has
arrived and 1s resting in the hotel
room or not. We had no way vet to
ask the hotel guest to come up to
the hotel lobby to meet me. | had
to wait a few more years (until 1970
in my senior year in college) to find
the answer. We all know now it is
the CCD structure that can store
and transfer one single electron.
With a precharge reset set gate and
a source-follower circuit, a scheme
invented by Walter Kosonocky. We
could finally meet our hotel guest at
the hotel lobby.

21 From CCD to the dynamic pn-p-n diede capacitors,
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4.9 A 1ms High-Speed Vision Chip with 3D-Stacked
140GOPS Column-Parallel PEs for Spatio-Temporal

Image Processing

Tomohiro Yamazaki', Hironobu Katayama', Shuji Uehara', Atsushi Nose',
Masatsugu Kobayashi', Sayaka Shida', Masaki Odahara?,
Kenichi Takamiya®, Yasuaki Hisamatsu?®, Shizunori Matsumoto?,

Leo Miyashita®, Yoshihiro Watanabe®, Takashi Izawa',
Yoshinori Muramatsu', Masatoshi Ishikawa®

'Sony Semiconductor Solutions, Atsugi, Japan
’Sony LSI Design, Atsugi, Japan
*University of Tokyo, Bunkyo, Japan

High-speed vision systems that combine high-frame-rate imaging and highly ||
parallel signal processing enable instantaneous visual feedback to rapidly control

machines over human-visual-recognition speeds.
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Next Generation Memory
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Prof.CAMead and myself, Sept 1972
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128 bit data comparator chip designed by CalTech and fabricated in Intel, 1972.

128-Bit Multicomparator

CARVER A. MEAD, RICHARD D. PASHLEY, memeeR, IEEg, LEE D. BRITTON, YOSHIAKI T. DAIMON,
AND STEWART F. SANDO, JR., MEMBER, IEEE

Abstrovs=A  128-bit multicomparater was designed to perform the
search-gort function on arbitrary lengih data strings. Devices can be
cascaded for longer block lengths or paralleled for bit-paralbel, wond-
serial applications. The circuit ufilizes a 3-phase static-dynamic shift
regizier cell for data handling and a wniquse gated ExcLusive-ron clocudt
to accomplizh the compare function. The compars operation is per-
fiormed bit parallel between 8 “data™ register and & “key™ reglater with
a third "mask™ register containing pon't cart bits thai disable the com-
paratar. The multicomparator was fabricated wsing pchannel silicon-
gate metal-oxide-semiconductor (MOS) technology on a 107 X 150
mil chip contzining 3350 devices. With transistor-transistor logic
{TTL} input, data rates in excess of 2 MHz have besn attsined, The
average power dissipation was 250 mW in the dynamic mode and 300
m¥ in fhe static mode,
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Fig. 1. Block diagram of multicomparator.
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" Charge-Coupled Devices and
Technical Applications

Papers,
ISSCC1974 Chairman
Philadelphia. Lewis M. Terman

Tectimanial 16 the imporiance af 154 dhargerangtes phencmenan i sfiebed 10 by (e
Mariis M, Lbmann and the Oevd A Swnefl peecdd thd yiad 10 the argeataons
ol the chargecoupled and Bucket bragade devices, nkigectively, Thi papen i this i
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Buried Channel CCD Structure
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HAD ( hole accumulated diode ) sensor
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A typical PNP Bip Tr Structure in early 1970s
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Mineer in CCD Imagers and Camera System
1983-1989 Engineering Manager in SRAM/DRAM/ADC
1990-1998 General manager in Sony /NVM/MCU/PS1
1998-2008 Executive Staff Sony Semiconductor -

Strategic Planning PS2/PS3
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|Cell B.E. 90nm, 65nm, 45nm

90nm Cell B.E.
Bl 0 DRt :
.L T

PS3 @ Cell Processor
D WL B/N—F

= e e

CHOBFHmDOFH
HardwareZSi &1 25:
Computer DIFEEZFD
7—#"7'77"\"—’&$Eo =P

e EE %t 8 - 2005 FT JLPS3

BREREBBR RIS
DZTEEDHS,

Copyright (¢) 2008 Hiroshige Goto All rights reserved.

SPE 14.76mm2
PPE 26.86mm2

605nm
Area 174.61mm2
74.2%

W 15.59mm

H 11.20mm

SPE 11.08mm2
PPE 19.60mm2

45nm
Area 115.46mm2
49%

W 12.75mm

H 9.06mm
SPE 6.47mm2
PPE 11.32mm2




Pedestrian and Vehicle counter system ‘Vdd
CdS Photo Cell IR sensor system block o= CLK clock &4 [a] B&

RESET
BER (3 | WHERLne CLK  pya8RLLINE | =
£ -5 ! PuIseGen(l)}T)f | y Y1 ‘»CLK
9B , K Pulse1 A F Pulse ? Cgunter(l} —9 v > AGBE data
= =] F— \ | Pulse2 HIEERE | x2 ¢ AL —> RefE B
g f’ulsef?en(z) H—> —) Counter(z)r l T
L Lf%a oo L L 21 = max
l IRsensor(2) IRsensor(1) E-E*Xﬁliﬂg
I = EREEAER LR
= 0K ‘1, 1

CRIEEBHEIT ... 1024ATT,
BRYDEERIT ceveee 60N T,
BESEICEONIEEWKRIE .....64 AT,

#H TOEITA DBRE

9 ¢

sensor A




St{=ZECell (CdS) Sensor System 5

2D FF O OEEAEL TS, clock A FH 1

FHOJESLRER (B4 1bit ) ADIEHRER)

F o CIK | clock
HEE s g Bine e CLK LN 1 I
b! Fusecania) —f— ! Ll ;mtw ¥i L T T
Wiai) Lt moutiusgaz] Xy T e MermoryTKN{L)
b el L T 2 counteriz) T
L fe & L I L - mad
l Bsedpani, s ena1) 1.-;;“"” 7| MaxCheck(1)
T = LA R T -
= - ¢ cxl vl z =

I- @ .' T SR ) ...mxlt'r“. L}
.t-ﬂé_'ﬂm (YalEE ... 5604 T _
| BB BEERN) G e A T CMOS @ %fﬁﬁiéhf:?j- D 7’%%&&@%
J— vdd vdd Vdd
_ .i Ka1o

PMOS6 PMOS3 PMOSI:’[

Wil

St{mECell (CdS) Sensor

Vrefs\idd,/2

PMOS2 |_qu(t) vouml)

V5(t)

Pulsel(t) T %)L

AR 7FOsES

HB RS IRILAH A wos2 L] L|[|NM053
et Vis
IRsensor {;E—-r- ,
'fl'hant:@l
AR PulseB T4 52 E B ® ‘oo g
Judge( )EIR& Pulsel (1) ”_H_ '_"_T' _'_} t

Pulsel(t) 1
—_—

P - S
P”'M" ——Tr—> I t

Pulse2(t) | ; H i. E i —]:'.ﬂ. ‘tE
W1 [l:. . s E H t
2OOPUSEEFDIEELSHNRIDENET ZONOSTOSLES, L (|




£ ik
B
,=LF,\ 0)
1m B
- B o
-
Z Actuators k ; ‘
.
-
£ Actuators }(: EIE 7
) £
=
==
Txy
=]
iz}
hA54
hA53 ‘
=
-1 AIPS BOX
\‘;‘l
’/'("” i AIPS High Performamj:e Home Servef
Li'_/,“ 03 o,
‘ AlIPS=Artificial Intelligent Partner System /

see http://lwww.aiplab.com /



ff”a s y

4 ) 5753 )/ |
3 A

‘AI PS BOX
. ' 1 z
A 4\ AIPS High Performance Home Server

AlPS=Artificial Intelligent Partner System

v



20134E3F25H F#45F
ISTFLELENET THE

\
\ x1ooxm$%b\$5zxga(§

'\9
7”/4 g uu n\k@ %%‘d‘f /

_ Tn

4




