Arthur H. Compton (1892 \sim 1962), while at Washington University at St. Louis found that x-rays increase in wave length when scattered, which he explained in 1923 on the basis of the quantum theory of light.

(1) Eo =
$$m_0 c^2$$

For photon,
 $E = \hbar \omega$ and $P = \hbar K$
 $E^2 - c^2 P^2 = 0$ $\omega = c K$

For photon,
$$E = \hbar \omega$$
 and $P = \hbar K$

$$(Photon)_4 = (\hbar \omega, \hbar K, 0, 0)$$

$$\hbar \omega$$

$$(Electron)_4 = (moc^2, 0, 0, 0)$$

$$(Electron)_4 = (mc^2, Pcos(\psi), -Psin(\psi), 0)$$

(2)
$$KE = \hbar\omega - \hbar\omega' = E - E_0 = mc^2 - m_0c^2$$

(3)
$$\omega t - Kx = K(ct - x)$$
 (4) $\omega = cK = 2\pi c/\lambda$

(5)
$$c = f \lambda = (2\pi f) (\lambda / 2\pi) = \omega / K$$

(6)
$$E^2 - c^2 P^2 = E_0^2$$

$$\lambda' - \lambda = \frac{h}{m_0 C} \{ 1 - \cos(\theta) \}$$